Skip to main content
Home

Primary Menu

  • OUR STRATEGY
    • HOW WE MAKE CANCER BREAKTHROUGHS
    • WHAT WE SUPPORT
    • OUR HISTORY
    • OUR LEADERSHIP
  • OUR IMPACT
    • WHAT SETS US APART
    • CURRENT PROJECTS
    • TIMELINE
  • GET INVOLVED
    • LEADERSHIP GIFTS
    • BECOME A SPONSOR
    • LEGACY PLANNING
    • EVENTS
  • FOR SCIENTISTS
    • AWARD PROGRAMS
    • APPLICATION GUIDELINES
    • GENERATIONS OF INNOVATORS
    • SELECTION COMMITTEES
    • ACCELERATING CANCER CURES
    • FAQ
  • NEWS
  • BROADWAY TICKETS

Donate

  • DONATE

Damon Runyon News

View New Articles By

News

Scientist Bio May 24, 2016
Julia C. Carnevale, MD

Pancreatic cancer may soon become the second leading cause of cancer deaths in the nation. While many cancers have mutations that can be targeted with specific drugs, historically no such targets had been recognized in pancreatic cancer. This changed recently with the discovery that approximately one of every four pancreatic cancers has a defect in the machinery that repairs DNA damage. For example, some have been found to have mutations in the BRCA genes as well as other similar genes involved in repairing double-strand breaks in DNA.

Read More
Scientist Bio May 24, 2016
Giada Bianchi, MD

Multiple myeloma (MM) is an incurable cancer of blood cells. It evolves from monoclonal gammopathy of undetermined significance (MGUS), a pre-malignant condition affecting 3-5% of individuals older than 50 years. MGUS patients progress to MM at a rate of 1% per year and the mechanisms underlying such transformation are unknown. No genetic driver mutations have been identified in MM to date, thus limiting our therapeutic options. Signaling through the transmembrane receptor Roundabout1 (ROBO1) is important in solid tumors, particularly gastrointestinal cancer.

Read More
Scientist Bio April 4, 2016
Corina E. Antal, PhD

Dr. Antal [Robert Black Fellow] aims to develop ways to increase the efficacy of pancreatic cancer chemotherapy. The reason for pancreatic cancer drug resistance is the presence of a dense, supportive tissue surrounding the cancer cells. She is using multiple high-throughput approaches to identify and target key genes within this tissue in order to reduce its supportive role. This work will aid in developing therapies to increase the delivery of the chemotherapeutic drugs to the tumor, allowing immune cells to infiltrate the tumor and kill cancer cells.

Read More
Scientist Bio February 4, 2016
James B. Skeath, PhD
Read More
Scientist Bio February 4, 2016
Ramesh A. Shivdasani, MD, PhD
Read More
Scientist Bio February 4, 2016
Chen-Ming Fan, PhD
Read More
Scientist Bio February 4, 2016
Robert J. Duronio, PhD
Read More
Scientist Bio February 4, 2016
Hongtao Yu, PhD
Read More
Scientist Bio February 4, 2016
Michelle D. Wang, PhD
Read More
Scientist Bio February 4, 2016
Yukiko Goda, PhD
Read More

Pagination

  • First page « First
  • Previous page ‹ Previous
  • …
  • Page 48
  • Page 49
  • Page 50
  • Page 51
  • Page 52
  • Page 53
  • Page 54
  • Page 55
  • Page 56
  • …
  • Next page Next ›
  • Last page Last »

ABOUT

Annual Reports + Report Cards
Financial Overview
Our Team

CONNECT

1.877.7CANCER
info@damonrunyon.org
One Exchange Plaza
55 Broadway, Suite 302
New York, NY 10006

Damon Runyon Cancer Research Foundation on Facebook Damon Runyon Cancer Research Foundation on LinkedIn Damon Runyon Cancer Research Foundation on BlueSky Damon Runyon Cancer Research Foundation on X Damon Runyon Cancer Research Foundation on Instagram Damon Runyon Cancer Research Foundation on Youtube

    

© COPYRIGHT DAMON RUNYON. ALL RIGHTS RESERVED

PRIVACY POLICY