Damon Runyon News
View New Articles By
View New Articles By
Metastasis, when tumor cells spread to distant organs and form secondary tumors, is one of the most deadly aspects of cancer but is not well understood. Drs. Martin and Matus are focusing on this process to understand how cancer cells break free from tumors to move through the body. Their collaborative project is founded upon an experimental observation made by Dr. Matus in the model roundworm, C. elegans, that a cell cannot simultaneously invade and divide. Using two model systems, C. elegans and the zebrafish, D.
Metastasis, when tumor cells spread to distant organs and form secondary tumors, is one of the most deadly aspects of cancer but is not well understood. Drs. Martin and Matus are focusing on this process to understand how cancer cells break free from tumors to move through the body. Their collaborative project is founded upon an experimental observation made by Dr. Matus in the model roundworm, C. elegans, that a cell cannot simultaneously invade and divide. Using two model systems, C. elegans and the zebrafish, D.
Dr. Zhang is developing a new form of cancer immunotherapy with improved safety and controllability. Redirecting the immune system to launch attacks on tumor cells has emerged as an extremely promising approach to fight cancer. One such strategy, named bispecific T cell engager antibody (BiTE) has shown remarkable efficacy against blood cancers, but it is also associated with severe toxicity.
Dr. Xu focuses on the estrogen receptor α (ERα), a nuclear hormone receptor that is mutated and hyperactivated in over 70% of breast cancers. Hormone therapy drugs, such as tamoxifen, which target classic ERα signaling are highly potent; however, many patients eventually develop drug resistance. His proposed research will address a previously unknown role of ERα in breast cancer progression and therapy resistance, and may identify a potential second-line therapy to treat breast cancer.
Dr. Warnhoff is studying how the timing of developmental events is regulated at the genetic level. Importantly, failures in normal developmental biology often give rise to cancer. microRNAs (miRNAs) are a class of key regulators of developmental timing. These small RNA molecules regulate gene expression, developmental transitions, metabolism, cell fate, and cell death. His research will examine new genes and pathways that modify miRNA biogenesis and activity to affect these critical developmental processes.
Dr. Shi is exploring how cells die in the nervous system in both healthy and disease states. He will focus on a novel and ill-defined form of cell death in the nerve cells and nerve fibers upon injury or stress. Resisting cell death is a hallmark of all cancers. Furthermore, many cancer chemotherapeutic drugs cause the death of nerve cells and nerve fibers, therefore inducing neurological diseases in cancer patients.
Dr. Pfau aims to identify the molecular regulators of blood-brain barrier heterogeneity. The blood-brain barrier (BBB) protects the brain from harmful substances to ensure proper brain function. Consequently, the BBB renders many cancer therapeutics ineffective for treatment of primary and metastatic brain tumors, as drugs that effectively treat cancer in the rest of the body cannot efficiently enter the brain.
Dr. McKinley studies how cells change their shape and behavior to build the complex structures that comprise mammalian organs. Cellular behaviors that occur during embryonic development are frequently co-opted by cancer cells during tumorigenesis and metastasis. Her goal is to understand how the machinery within cells drives changes in tissue architecture in a developmental context, generating new insights into how these cellular processes are corrupted during cancer progression.
Dr. LaFave is studying how mutations in the SWI/SNF chromatin remodeling complex affect the initiation and progression of non-small cell lung cancer (NSCLC). Mutations in several SWI/SNF components have been identified in a variety of solid tumors; however, it remains unclear how their disruption contributes to tumor progression. She aims to develop novel NSCLC cell line and murine models to study the impact of SWI/SNF alterations. She will map the chromatin landscape in these models in order to characterize epigenetic changes that contribute to altered gene expression.
Dr. Kory focuses on cancer cell metabolism. Cancer cells are characterized by rapid and uncontrolled cell growth. To sustain their accelerated growth, cancer cells rely on a constant supply of building blocks produced by specific metabolic pathways. One metabolic pathway, the mitochondrial one-carbon pathway, has recently been found to be especially important for the growth and survival of tumors and correlates with the survival of cancer patients.