Damon Runyon News
View New Articles By
View New Articles By
Dr. Dumesic seeks to understand how physical exercise promotes health. In addition to strengthening skeletal muscle, exercise also benefits distant organ systems, providing protection from metabolic disorders and chronic diseases including cancer. These widespread effects highlight muscle’s ability to communicate via secreted signals.
Dr. Roop seeks to advance HIV vaccine design efforts by studying the unique antibody response of infants infected with HIV. The 36 million people worldwide who are infected with HIV are at an increased risk for many forms of cancer. Infants who acquire HIV from their mothers rapidly develop broadly active antibodies that are capable of neutralizing a wide diversity of global HIV strains. An understanding of the developmental processes involved in eliciting this broad and potent response may reveal clues vital to vaccine design efforts.
Dr. Blanton is focusing on the contributions of the X and Y chromosomes to immune cell gene expression and function. Since the immune system plays a crucial role in tumor biology and cancer treatment, this work will help illuminate differences between cancer susceptibility, progression, and treatments in men and women.
Dr. Wesener is studying how food processing by the community of tens of trillions of microbes (microbiota) that resides in the human gut influences nutritional status. Obesity, and its associated metabolic abnormalities, is associated with higher incidence of certain cancers, notably those affecting the colon, uterus, and breast. Transplantation of intact gut microbiota from obese humans into germ-free mice leads to increased fat gain and obesity-associated metabolic abnormalities.
Dr. Bridges studies how bacterial cells form communities called biofilms that have particular three-dimensional architectures. He is investigating how the bacterial cell-cell communication process called quorum sensing drives the spatio-temporal gene expression patterns that govern biofilm formation. Biofilm bacteria are implicated as causal in various cancers and, furthermore, cancer patients receiving chemotherapy frequently suffer from infections caused by bacteria that rely fundamentally on biofilm formation for pathogenesis.
Dr. Tang is interested in discovering small-molecule inhibitor drugs that target human immune-checkpoint proteins, including programmed cell death protein 1 (PD-1), using a combination of biochemistry, protein engineering, structural biology and immunology approaches. These small-molecule inhibitors would offer safety advantages resulting from their much shorter half-lives as compared to FDA-approved monoclonal antibody therapies, and possibly also offer efficacy advantages resulting from increased penetration and distribution within the tumor microenvironment.
Dr. Ramanan studies the interplay between commensal microbes and immune cells in the intestine, and how these interactions influence the progression of inflammation and colorectal cancer. Immune fitness of an individual is thought to be the result of ongoing interactions between genetics and microbial exposure. A fundamental and often overlooked aspect of immunity, however, is the effect of maternal and environmental factors in early life. She uncovered a novel mode of non-genetic multigenerational transfer of immune traits (entero-mammary axis).
Dr. Lien is studying how diet and nutrition impact cancer cell metabolism and tumor progression. The way cancer cells utilize nutrients to support their growth and proliferation is determined not only by cancer-promoting genetic alterations, but also by the tumor’s interactions with its local environment. Diet-mediated changes in whole-body metabolism and nutrient availability are an important part of a tumor’s metabolic environment, and a better understanding of how diet modulates nutrient availability and utilization by cancer cells is needed.
Antibodies, vaccines, checkpoint inhibitors, and CAR-T cells have all been successful in leveraging the immune system against disease, but these treatment strategies still have limitations. Dr. Zhou is designing new macromolecules to direct the immune response to cancer. She plans to engineer dynamic, functional proteins that respond to specific protein post-translational modifications, conformations, or complexes.