Damon Runyon News
View New Articles By
View New Articles By
Dr. Levin is studying the interaction of host cells with the pathogens that infect them. These interactions cause repeated cycles of evolution, leaving “signatures” in both host and pathogen genomes specifically at molecular interfaces of host-pathogen binding. Evolutionary signatures can be used to pinpoint genes critical to disease progression. She is specifically examining the interactions between the pathogenic bacteria Legionella pneumophila and its and amoeba hosts. Her research will inform ongoing efforts to control this pathogen and reduce outbreaks.
Dr. Beliveau has developed transformative single-cell imaging technologies to analyze how chromosomes inside the nucleus are organized. He will use these tools to investigate the causes and consequences of genome organization in health and disease.
Though radiation therapy is a key treatment for many solid tumors, healthy surrounding tissue can be damaged through inadvertent exposure leading to serious side effects. Dr. Schuemann aims to establish if “extreme dose rate (EDR) proton therapy” can be used to spare healthy tissue while treating solid tumors. With new EDR technology, proton radiation therapy is delivered extremely fast—whole treatments in milliseconds. However, the mechanism underlying the reduction in side effects is still unknown.
Immune checkpoint inhibitors unleash the immune system to attack tumors; they have revolutionized the treatment of solid cancers by changing the prognosis for many patients, improving their quality of life and offering long-lasting remission. However, these immunotherapies can also spur assaults on healthy organs called “immune-related adverse events” (irAEs), ranging from minor rashes and fevers to severe gastrointestinal complications and deadly heart inflammation. Dr.
Dr. Sheltzer studies how aneuploidy, or having too many or too few chromosomes in the cell, affects cancer development and treatment. Approximately 55% of breast cancers have an extra copy of one part (called the “q arm”) of chromosome 1. His lab is developing cutting-edge chromosome engineering technology to eliminate the extra copies of 1q from breast cancer cell lines and determine whether this prevents the cells from forming tumors.
Dr. Mancias is exploring the synergistic interactions between radiation therapy and targeted immunotherapy in patients with pancreatic cancer (pancreatic ductal adenocarcinoma, “PDAC”). While this treatment combination has shown dramatic benefits for patients with certain cancer types, it has been challenging to predict which patients will respond and to determine how to harness the anti-tumor immune cell effects of radiation.
Hedgehog (Hh) and Wnt signaling pathways are required for proper development during the formation of an embryo. These pathways can also be activated abnormally in adult tissue and have been implicated in multiple cancers. Several small molecule inhibitors and antibodies targeting Hh or Wnt signaling are being tested in clinical trials, but a detailed understanding of these processes is lacking. Dr. Li will apply cell and structural biology approaches to dissect the signaling mechanisms at an atomic level.
Dr. Moye is studying early-stage lung cancer. Specifically, he is investigating the cell-to-cell cross talk between lung cancer cells and their surrounding microenvironment and how this cellular communication promotes early-stage lung cancer initiation and progression. Dr. Moye aims to discover secreted factors that can be used in diagnosis and to identify new targets for drug development that interfere with the lung cancer microenvironment.
Dr. Mann is investigating why the “killer” T cells of our immune system gradually lose the ability to recognize and kill cancer cells. Immunotherapy aims to revitalize these dysfunctional “exhausted” T cells, but a better understanding of how T cells recognize markers on cancer cells called antigens is needed. Dr. Mann is testing the response of engineered T cells to antigen stimulation at different durations, frequencies, and intensities. These studies will focus on understanding the role of calcium signaling in the failure of T cell response.
Dr. Zheng [HHMI Fellow] is taking an interdisciplinary approach to understand how transcription factors that regulate the transcription of DNA to RNA malfunction in human cancers. The B cell lymphoma/leukemia 11A (BCL11A) gene encodes a zinc-finger transcription factor, which plays a critical role in silencing fetal globin expression in the fetal-to-adult switch in red blood cells and is implicated in cancer. Dr.