Damon Runyon News
View New Articles By
View New Articles By
Dr. Catipovic [HHMI Fellow] focuses on the mechanisms governing the resolution of errors that arise during RNA translation in mammals. Ribosomes translating the same message can collide if they are damaged or encounter blockages much like cars involved in a traffic accident. While cells can tolerate small numbers of these incidents, pervasive collisions overwhelm the cell and force it to make crucial decisions regarding long-term viability. Dr. Catipovic investigates the biochemical mechanisms governing this determination.
The formation of complex organs such as the lungs is a largely elusive process in human development, though the fact that these complex structures are successfully reproduced over and over again suggests a strong underlying set of biological rules. Further, it has been shown that tumors and metastases can be viewed as aberrant organs, employing many of the same programs as in normal development. Understanding these rules and how they can be hijacked are long-standing critical questions in cancer research.
Cancer cells form complex interactions with the various normal cells in their environment, including immune cells, fibroblasts, and blood vessels. These interactions are essential for cancer cells to grow, evade immune surveillance, and become metastatic or resistant to certain therapies. Spatial transcriptomics refers to a method of visualizing the distribution of RNA molecules in a tissue sample, allowing us to assign specific cell types to their locations. Dr.
Dr. McKinley studies the lining of the uterus called the endometrium. The human endometrium is a uniquely powerful system to understand fundamental principles of regeneration, as it regenerates after menstruation approximately 400 times over the reproductive lifespan. Understanding this remarkable regenerative event is critical to combat the growing incidence of endometrial cancers, and to address the longstanding unmet needs of patients with endometriosis and adenomyosis.
Dr. Kory studies the role of mitochondria in metabolic homeostasis and signaling, with a focus on mitochondrial transporters. Mitochondria are critical organelles in metabolic functions, generating the energy and compounds needed to construct the building blocks of the cell. However, they have been hard to identify and even harder to study mechanistically. She will approach the problem using innovative functional genomics and metabolomics tools.
Dr. Keren [CRIS Cancer Foundation Breakthrough Scientist] is combining novel imaging methods with advanced computational analysis, artificial intelligence, and clinical collaborations to investigate how cells within the tumor microenvironment act as a system. She will apply multiplexed imaging and state-of-the-art image analyses to comprehensively characterize cancerous lesions in situ and functionally relate these features to system-level mechanisms such as immune evasion, tumor progression, metastasis, and response to therapy.
Stable levels of ions (such as sodium or potassium) are critical for human health. Imbalanced ion concentrations indicate a metabolic disorder and are related to the process of metastasis. Dr. Liu aims to develop small molecule therapies that target proteins involved in metabolic disorders. To this end, she is developing computational methods to screen billions of compounds and identify potential drug candidates. With this project she hopes to not only meet an urgent therapeutic need but also improve the computational-based drug discovery pipeline.
An important area of basic oncology research focuses on mutations that drive resistance to cancer drugs. While the contribution of mutations to cancer drug resistance is undeniable, how cells adapt to drugs on short time scales, long before genetic mutations arise, is very poorly understood. Dr.
Current pancreatic cancer chemotherapies are not effective, and targeted therapies are only applicable in about 5% of cases. Furthermore, pancreatic cancers cause immune cell stress, limiting the success of immunotherapies in this disease. Using animal models and tumor samples from pancreatic cancer patients, Dr. Escobar-Hoyos has discovered that changes in RNA splicing, a process that controls protein diversity in cells, are crucial for pancreatic cancer development, therapy resistance, and disruption of anti-tumor immunity.
Obesity is a major risk factor for over a dozen cancer types, including pancreatic cancer, the third leading cause of cancer-related death in the United States. Despite the rising prevalence of obesity worldwide, surprisingly little is known about how it promotes cancer development. Using animal models that closely mimic human pancreatic cancer, Dr. Muzumdar showed that obesity could provoke abnormal signals sent by the hormone-producing cells of the pancreas to their neighboring tumor-forming cells.